

GCSE Science A / Chemistry

CH1FP Final Mark Scheme

4405 / 4402 June 2017

Version/Stage: v1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Information to Examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the Examiner make his or her judgement and help to delineate
 what is acceptable or not worthy of credit or, in discursive answers, to give an overview of
 the area in which a mark or marks may be awarded
- the Assessment Objectives and specification content that each question is intended to cover.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

2. Emboldening and underlining

- 2.1 In a list of acceptable answers where more than one mark is available 'any **two** from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.
- **2.2** A bold **and** is used to indicate that both parts of the answer are required to award the mark.
- **2.3** Alternative answers acceptable for a mark are indicated by the use of **or**. Different terms in the mark scheme are shown by a /; eg allow smooth / free movement.
- **2.4** Any wording that is underlined is essential for the marking point to be awarded.

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error/contradiction negates each correct response. So, if the number of error/contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (indicated as * in example 1) are not penalised.

Example 1: What is the pH of an acidic solution?

[1 mark]

Student	Response	Marks awarded
1	green, 5	0
2	red*, 5	1
3	red*, 8	0

Example 2: Name two planets in the solar system.

[2 marks]

Student	Response	Marks awarded	•	
1	Pluto, Mars, Moon	1		
2	Pluto, Sun, Mars,	0		
	Moon			

3.2 Use of chemical symbols/formulae

If a student writes a chemical symbol/formula instead of a required chemical name, full credit can be given if the symbol/formula is correct and if, in the context of the question, such action is appropriate.

3.3 Marking procedure for calculations

Full marks can be given for a correct numerical answer, without any working shown. However, if the answer is incorrect, mark(s) can be gained by correct substitution/working and this is shown in the 'extra information' column or by each stage of a longer calculation.

3.4 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.5 Errors carried forward

Any error in the answers to a structured question should be penalised once only. Papers should be constructed in such a way that the number of times errors can be carried forward are kept to a minimum. Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation 'ecf' in the marking scheme.

3.6 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited **unless** there is a possible confusion with another technical term.

3.7 Brackets

(.....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.8 Accept/allow

Accept is used to indicate an equivalent answer to that given on the left-hand side of the mark scheme. Allow is used to denote lower-level responses that just gain credit.

3.9 Ignore/Insufficient/Do not allow

Ignore or insufficient is used when the information given is irrelevant to the question or not enough to gain a marking point. Any further correct amplification could gain the marking point.

Do **not** allow means that this is a wrong answer which, even if the correct answer is given, will still mean that the mark is not awarded.

4. Quality of Written Communication and levels marking

In Question 7 students are required to produce extended written material in English, and will be assessed on the quality of their written communication as well as the standard of the scientific response.

Students will be required to:

- · use good English
- organise information clearly
- use specialist vocabulary where appropriate.

The following general criteria should be used to assign marks to a level.

Level 1: Basic

- Knowledge of basic information.
- Simple understanding.
- The answer is poorly organised, with almost no specialist terms and their use demonstrating a general lack of understanding of their meaning, little or no detail.
- The spelling, punctuation and grammar are very weak.

Level 2: Clear

- Knowledge of accurate information.
- Clear understanding.
- The answer has some structure and organisation, use of specialist terms has been attempted but not always accurately, some detail is given.
- There is reasonable accuracy in spelling, punctuation and grammar, although there may still be some errors.

Level 3: Detailed

- Knowledge of accurate information appropriately contextualised.
- Detailed understanding, supported by relevant evidence and examples.
- Answer is coherent and in an organised, logical sequence, containing a wide range of appropriate or relevant specialist terms used accurately.
- The answer shows almost faultless spelling, punctuation and grammar.

Question	Answers	Extra information	Mark	AO / Spec. Ref.
1(a)(i)	dissolved locked up		1 1	AO1 1.7.2g;h
1(a)(ii)	photosynthesis		1	AO1 1.7.2f
1(b)(i)	argon - 1 nitrogen - 80 oxygen - 20	each mark is awarded for one line from each gas to the correct percentage	1 1 1	AO1 AO3 1.7.2a
1(b)(ii)	(burning) fossil fuels	allow deforestation or a description allow (increase in) transport / factories ignore more people or population (increase)	1	AO1 1.7.2i
Total			7	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
2(a)	hydrogen	allow H ignore numbers	1	AO2 1.1.2
2(b)	about 100		1	AO1 1.1.1a
2(c)	same number of electrons in the outer shell similar chemical reactions		1	AO1 1.1.2a
2(d)	noble transition	ignore inert	1	AO1 1.1.2b 1.3.3a
2(e)	ions molecules	in this order	1	AO2 1.1.3a
Total			8	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
3(a)	magnesium <u>oxide</u>	allow MgO but must be correct formula do not allow extra products	1	AO2 1.1.3b
3(b)(i)	carbon	ignore C ignore any numbers eg 3 carbon	1	AO1 1.1.1b
3(b)(ii)	loss of oxygen	allow iron gains electrons do not allow loss of oxide do not allow iron oxide gains electrons	1	AO2 1.3.1d
3(b)(iii)	brittle soft alloys or steels		1 1 1	AO1 1.3.2a;b;c
Total			6	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
4(a)	distillation		1	AO2 1.6.1a
4(b)(i)	liquid to gas / vapour	liquid to gas / vapour allow evaporation / vaporisation / evaporates / evaporating ignore boil		AO2 1.6.1a
4(b)(ii)	gas / vapour to liquid	allow condensation / condensing / condenses	1	AO2 1.6.1a
4(c)(i)	olive (oil)		1	AO3 1.6
4(c)(ii)	coconut (oil)		1	AO3 1.6
4(c)(iii)	olive (oil)		1	AO3 1.6
4(d)	any two from: • flavour / taste • texture • colour • minerals / nutrients • calorific value	ignore health / fat / grease allow energy content	2	AO1 1.6.1c
Total			8]

Question	Answers	Extra information	Mark	AO / Spec. Ref.
5(a)(i)	2900	allow with or without working	2	AO2
		If answer is not correct allow one mark for 7000/2 or for 3500 (km)		1.7.1a
5(a)(ii)	plates	Must be in this order	1	AO1
	speeds		1	1.7.1c
	currents		1	
	processes		1	
5(b)(i)	bar correct (47%)	allow ± ½ a square	1	AO2
	, ,	,		1.7.1b
5(b)(ii)	9 %		1	AO2
				1.7.1b
5(b)(iii)	limited / finite resource	allow running out or	1	AO3
		non-renewable		1.3.1j
		ignore cost or short supply or there is not a lot of it left		1.3.3b
5(b)(iv)	electrolysis		1	AO1
	·			1.3.1h
5(b)(v)	copper ions are attracted	allow opposite (charges) attract	1	AO1
		· · · · · · · · · · · · · · · · · · ·		1.3.1g;h
	because they are positive	allow because they need to gain electrons (to form copper)	1	
Total			12	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
6(a)(i)	electronic structure drawn	allow any representation of an electron	1	AO2 1.1.1h
		allow 2,4		
6(a)(ii)	six / 6 protons	do not allow electrons in	1	AO1 AO2
	protoris	nucleus otherwise ignore electrons	'	1.1.1c;d;e
		do not allow nucleus is neutral		
	(protons) are positively charged	allow (protons are) + / +1 / 1+	1	
		ignore statements about mass		
		if no other mark awarded allow one mark for nucleus		
6(b)	(a hydrocarbon is) made up of hydrogen and carbon (atoms) only	do not allow mixture	1	AO1 1.4.1a;c
6(c)(i)	† †	ethane correctly drawn with	1	AO1
	н—С——С—н 	another hydrogen on each carbon and another three single bonds		1.4.2a 1.5.1c
	H H H C ====C H H H H	ethene correctly drawn with a double bond between the carbon atoms	1	
6(c)(ii)	as the number of carbon atoms increases the boiling	allow converse	1	AO3 1.4.2c
	point increases	ignore alkene		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
6(c)(iii)	the boiling points of alkanes are higher than the boiling points of alkenes	allow the boiling points of alkenes are lower than the boiling points of alkanes	1	AO2 1.4.2b;c
	that has the same number of carbon atoms	consequential on first marking point	1	
	or state a correct example	e.g. hexane has a higher boiling point than hexene or hexane boils at 69°C hexene boils at 64°C		
		if no other mark awarded allow both alkanes and alkenes have the same pattern of the more carbon atoms the higher the boiling point for one mark		
6(d)	(alkane molecules are) cracked	allow break down / up or decompose or split up	1	AO1 AO2 AO3
	to produce small(er) molecules / alkanes / hydrocarbons	allow short chain for small	1	1.5.1a;b;d
	and alkenes or a named alkene	allow molecules that have a double bond or are unsaturated	1	
		if no other mark awarded allow evaporate or boil for one mark		
		ignore turns to gas		
Total			13	

Question		Answe	rs		Extra infor	mation	Mark	AO / Spec. Ref.
7							6	AO2 AO3
Communicat	tion (QV	VC) as well a	s the stand	lard of the		Written conse. Examine approach to the		1.2.1a;b 1.4.2a 1.4.3a;b;c
0 mark	(S	Level 1 (1-	-2 marks)	Level 2 (3-4 marks)	Level 3 (5-6	marks)	1.7.2a;i
no relevant information (given	discrete relevant points made about types of pollution or problematic effects or environmental impacts or environmental impacts an explanation of how an environmental impact is caused by the pollution from or the problematic effects of linked process an explanation of how environmental impacts are caused by the pollutions from or the problematic effects of linked processes						
Examples of	f chem	istry points	made in th	-	se could incl	lude:		
Processes quarrying drilling thermal decomposition combustion of fossil fuel use of explosives Types of pollution and problematic effects: visual pollution noise pollution dust pollution dust pollution destruction of land air / atmospheric pollution (methane, carbon dioxide, sulphur dioxide, NO _x , particulates) water (rivers / lakes / seas) pollution earth tremors								
distubreadest(CH(part(SO₂	ruction or ruction of the ruction of	of areas of n of people ar oblems or as of habitats o) greenhous s) global dimi	nd animals sthmatic att r biodiversit e gases → ming → cor rain → con	ack y or kills w global war isequence	•			
Total							6	L